Eine Kurzbeschreibung des Double Chooz Experiments
Einleitung
Im Double Chooz Experiment wird die besondere Eigenart von Neutrinos untersucht, sich von einer Sorte in eine andere umzuwandeln (Neutrinooszillation). Das Experiment wird im Rahmen einer internationalen Kollaboration in Frankreich am Kernkraftwerk Chooz betrieben, in dem durch Kernprozesse Antineutrinos in großer Zahl entstehen. Zur Bestimmung der Umwandlungswahrscheinlichkeit werden zwei identische Detektoren in 400 und 1050 m Entfernung zum Reaktor aufgebaut. Da Neutrinos eine sehr geringe Reaktionswahrscheinlichkeit haben, wird von 2011 an etwa 5 Jahre lang gemessen, um genügend Neutrinos nachzuweisen und die kleine Umwandlungswahrscheinlichkeit erstmals zu messen, oder Obergrenzen für diesen Prozess abzuleiten. Das ursprüngliche CHOOZ Experiment konnte die bis heute genaueste Obergrenze für die Umwandlungswahrscheinlichkeit der Elektronneutrinos bestimmen, die mit θ13 angegeben wird. Von Double Chooz erhofft man sich eine nochmals stark verbesserte Grenze oder sogar einen genauen Wert.Konzept des Experimentes
Der radioaktive Zerfall von Spaltprodukten im Kernreaktor liefert als Nebenprodukt Antielektronneutrinos, die in alle Richtungen fliegen. Einer von zwei Detektoren wird relativ nahe am Reaktor aufgestellt. Die Antineutrinos haben bis zum nahen Detektor noch nicht die Möglichkeit, sich in eine andere Sorte umzuwandeln. Der zweite Detektor ist dagegen in einem größeren Abstand platziert, in dem Umwandlungen wahrscheinlicher werden. Die Detektoren können ausschließlich die im Reaktor erzeugten Antielektronneutrinos messen. Misst man also im fernen Detektor weniger Neutrinos als durch die Abstandsverdünnung erwartet, kann man davon ausgehen, dass die Antielektronneutrinos sich teilweise in eine andere Sorte umgewandelt haben. Aus der Anzahl der Neutrinoereignisse im fernen Detektor im Vergleich zum nahen Detektor schließt man darauf, wie groß die Umwandlungswahrscheinlichkeit ist.Neutrinos besitzen keine elektrische Ladung und lassen sich deshalb nur schwer nachweisen. Im Fall des Double Chooz Experiments geschieht der Neutrinonachweis über den inversen Betazerfall, bei dem ein Antielektronneutrino ein Proton in ein Neutron und ein Positron umwandelt:
&nue+p→e++n
Das entstehende Positron erzeugt im Detektor Szintillationslicht. Um das Neutron nachzuweisen ist dem Flüssigszintillator Gadolinium zugesetzt, das das Neutron mit hoher Wahrscheinlichkeit einfängt und dabei in einen angeregten Zustand übergeht. Der angeregte Gadoliniumkern kann dann unter Aussendung von Gammastrahlung in den Grundzustand übergehen, was wieder zur Produktion von Szintillationslicht führt. Das Licht wird dann von den Photovervielfachern registriert.